

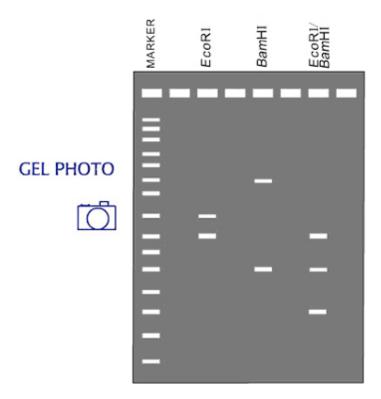
Date:

Gel electrophoresis: sort and see the DNA

Pre-class activity

•			•	
n	ire	ecti	ını	ns:

- I. Go to the DNAi website www.dnai.org > Manipulation > Techniques > sorting and sequencing.
 - 2. View the Gel Electrophoresis 2-D animation, and answer the following questions.


Questions:

- 1. How does the process of gel electrophoresis separate DNA fragments?
- 2. What is the purpose of the agarose gel?
- 3. What is the purpose of adding blue "tracking" dye to the DNA samples?
- 4. Explain why DNA has an overall negative charge.
- 5. Why is the fact that DNA has a negative charge so important in the gel electrophoresis process?
- 6. Explain how an agarose gel can separate DNA fragments of different lengths.
- 7. What is the purpose of ethidium bromide in gel electrophoresis?

Date:

- 8. Why is a marker used when running the fragments through the gel?
- 9. What is a restriction map?
- 10. On the gel picture below,
 - (a) circle the smallest fragment produced by a restriction enzyme and label it "smallest."
 - (b) circle the largest fragment produced by a restriction enzyme and label it "largest."

11. In one or two sentences, summarize the technique of gel electrophoresis.

Date:

Restriction maps of the linear $\ \square$ genome

	10,000					
<i>Eco</i> RI S	Sites					
				31,747		
HindIII	Sites	2	5,157	37	7,459	
				36,895		
BamHI	Sites					
	5,505	22,346				
<i>Nco</i> I Si	tes					
		19,329 23,				44,238 l
BmrI Si	ites					
	7,054 11,608	2!	5,691 30,	332		
				-		
<i>Stu</i> I Si	 tes			32,997	40,5	596

Date:

Gel electrophoresis: sort and see the DNA

Making a DNA fingerprint

In this activity, you will model the construction of DNA fingerprints for a viral genome using different restriction enzymes. You will also practice interpreting restriction maps and visualize how the process of gel electrophoresis separates DNA fragments.

DNA restriction fragment size chart

Directions:

List your DNA fragments in the following chart under the column of the appropriate restriction enzyme. List each fragment, from largest to smallest.

EcoRI	HindIII	BamHI	NcoI	BmrI	StuI

Date:

DNA fingerprints

<u>Marker</u>	<u>Eco</u> RI	<u>Hin</u> dIII	<u>Bam</u> HI	<u>Nco</u> I	<u>Bmr</u> I	<u>Stu</u> I
(50,000)						
(30,000)						
(20,000)						
(15,000)						
(10,000)						
(5,000)						
(3,000)						
(2,500)						
(2,500)						
(1,000)						